Blog Status

Nesaranews is proud to announce this new blog for natural homeopathic healing alternatives!
Welcome new publishers! Lets make this place a really great
source for helping others get away from Big Pharma Poisons!

Monday, May 18, 2015

Ear – Hearing Loss, Tinnitus, Meniere’s Disease...

Ear – Hearing Loss, Tinnitus, Meniere’s Disease...


I had a doctor FRIEND that healed her cochlear hair cell hearing loss from 15% hearing to 85% heating in under 3 weeks...

J Laryngol Otol.  2013 Feb 21:1-5. [Epub ahead of print]

Effect of local irradiation with 630 and 860 nm low-level lasers on tympanic membrane perforation repair in guinea pigs.

Maleki S, Kamrava SK, Sharifi D, Jalessi M, Asghari A, Ghalehbaghi S, Yazdanifard P.
Otolaryngology – Head and Neck Surgery Research Center, Rasool Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Objective: In this study, we evaluated the effect of low-level lasers on the healing of tympanic membrane perforation, one of the most common otological pathologies.
Methods and materials: Twenty-four guinea pigs were randomly assigned to either the experimental or control group. One day after the induction of a 2 mm diameter, centred myringotomy in all animals, the tympanic membranes in the experimental group were irradiated with 630 and 860 nm lasers for 10 days. Two weeks later, histological changes in the membranes were evaluated.
Results: Tympanic membrane thickening and inflammatory cell infiltration in the tympanic membranes and surrounding tissues were significantly less in the experimental group (p < 0.001). The distance from the external auditory canal wall to the malleus tip did not differ significantly between the two groups (p = 0.42).
Conclusion: The results show that the combined application of 630 and 860 nm lasers had a significant effect on the healing of tympanic membrane perforation, and on the prevention of thick fibrotic or atelectatic neomembrane formation.
J Biomed Opt.  2012 Jun;17(6):068002.

Effect of low-level laser treatment on cochlea hair-cell recovery after acute acoustic trauma.

Rhee CK, Bahk CW, Kim SH, Ahn JC, Jung JY, Chung PS, Suh MW.
Dankook University, Medical Laser Research Center, Cheonan, Republic of Korea.
We investigated the effect of low-level laser radiation on rescuing hair cells of the cochlea after acute acoustic trauma and hearing loss. Nine rats were exposed to noise. Starting the following day, the left ears (NL ears) of the rats were irradiated at an energy output of 100 to 165??mW/cm(2) for 60 min for 12 days in a row. The right ears (N ears) were considered as the control group. Frequency-specific hearing levels were measured before the noise exposure and also after the 1st, 3rd to 5th, 8th to 10th and 12th irradiations. After the 12th treatment, hair cells were observed using a scanning electron microscope. Compared to initial hearing levels at all frequencies, thresholds increased markedly after noise exposure. After the 12th irradiation, hearing threshold was significantly lower for the NL ears compared to the N ears. When observed using an electron microscope, the number of hair cells in the middle turn of the NL ears was significantly larger than that of the N ears. Our findings suggest that low-level laser irradiation promotes recovery of hearing thresholds after acute acoustic trauma.
 Zhongguo Zhen Jiu.  2012 May;32(5):413-6.

Moderate and severe sudden deafness treated with low-energy laser irradiation combined with auricular acupoint sticking.

[Article in Chinese]
Zhou GY.
Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinxiang Medical College, Weihui 453100, Henan Province, China.
To test the therapeutic effect on moderate and severe sudden deafness treated with low-energy laser irradiation on acupoint and external auditory canal combined with auricular point sticking (APS) and as compared with electroacupuncture.
Two hundred and fifty-eight cases of moderate and severe sudden hearing loss were randomly divided into an observation group 1, an observation group 2 and a control group, 86 cases in each group. In three groups, 10% low molecular Dextran 500 mL were used for intravenous infusion. Based on the above treatment, the observation group 1 was treated with low-energy laser irradiation on acupoint and external auditory canal (such as Ermen (TE 21), Tinggong (SI 19) and Tinghui (GB 2)), combined with APS at Gan (liver), Shen (kidney) and Neifenmi (endorine), etc. The observation group 2 was treated with electroacupuncture at the same acupoints as those point irradiation in observation group 1. Fifteen days made one session. The therapeutic effects were evaluated after one and two sessions.
After two sessions, The cured rate was 40.7% (35/86) in observation group 1 and 38.4% (33/86) in observation group 2,which were superior to 25.6% (22/86) in control group (both P < 0.05). Compared with one session, the therapeutic effects after two sessions were better in two observation groups (both P < 0.05), but there was no significant difference between two groups (both P > 0.05). In comparison of the improvements of frequency audiometry and auditory function, the two observation groups were better than those in control group (P < 0.05, P < 0.01), and the improvements after two sessions were better in two observation groups (both P < 0.01).
Both of low-energy laser irradiation on acupoint and external auditory canal combined with APS and electroacupuncture are able to decrease frequency audiometry, improve auditory function, and the therapeutic effects are better with prolongation of treatment time. The clinical efficacy of above two the rapies on moderate and severe sudden deafness is superior remarkably to that of conventional treatment. The therapy of low-energy laser irradiation on acupoint and external auditory canal combined with APS can replace the electroacupuncture therapy in treating moderate and severe sudden deafness.
Lasers Med Sci.  2011 Dec 4. [Epub ahead of print]

Effect of low-level laser therapy on cochlear hair cell recovery after gentamicin-induced ototoxicity.

Rhee CK, He P, Jung JY, Ahn JC, Chung PS, Suh MW.
Department of Otolaryngology-Head & Neck Surgery, Dankook University College of Medicine, Cheonan, Korea.
Cochlear hair cells are the sensory receptors of the auditory system. It is well established that antibiotic drugs such as gentamicin can damage hair cells and cause hearing loss. Rescuing hair cells after ototoxic injury is an important issue in hearing recovery. Although many studies have indicated a positive effect of low-level laser therapy (LLLT) on neural cell survival, there has been no study on the effects of LLLT on cochlear hair cells. Therefore, the aim of this study was to elucidate the effects of LLLT on hair cell survival following gentamicin exposure in organotypic cultures of the cochlea of rats. The cochlea cultures were then divided into a control group (n=8), a laser-only group (n=8), a gentamicin-only group (n=8) and a gentamicin plus laser group (n=7). The control cultures were allowed to grow continuously for 11 days. The laser-only cultures were irradiated with a laser with a wavelength of 810 nm at 8 mW/cm(2) for 60 min per day (0.48 J/cm(2)) for 6 days. The gentamicin groups were exposed to 1 mM gentamicin for 48 h and allowed to recover (gentamicin-only group) or allowed to recover with daily irradiation (gentamicin plus laser group). The hair cells in all groups were stained with FM1-43 and counted every 3 days. The number of hair cells was significantly larger in the gentamicin plus laser group than in the gentamicin-only group. The number of hair cells was larger in the laser-only group than in the control group, but the difference did not reach statistical significance. These results suggest that LLLT may promote hair cell survival following gentamicin damage in the cochlea. This is the first study in the literature that has demonstrated the beneficial effect of LLLT on the recovery of cochlear hair cells.
Vestn Otorinolaringol.  2011;(2):43-5.


No comments:

Post a Comment